
Automation Test
Strategy & Design
for Agile Teams

Cross Browser Testing
Coded or Codeless

Automation Test Strategy & Design 3

Test Automation Strategy for Agile Teams
11

10

12

15

13

16

14

16

16

Areas to Consider & Where do we begin?

Applying Agile Principles

Test Automation Candidates, Test Modeling & Coverage

Automation Tools & Implementation, Test Data

Software Test & Test Automation Metrics

Continuous Testing

ROI & Cost of Test Automation

Test Management, Maintaining Tests

Test Design Best Practices 17

18

20

21

Test Automation Design Patterns and Process

Areas of Testing: GUI Testing

Best Practices

30Looking to the Future

27New Trends in Test Automation

Test Automation: Challenges & Getting Started

What Is Test Automation?

Why Automate Tests?

Test Automation Lifecycle & Classification

Challenges of Test Automation

5

5

6

7

4

23Test Automation Frameworks
Choosing a Test Automation Framework and Tools 22

About the Author 31

Contents
Table of

2Automation Test Strategy & Design
Cross Browser Testing

Coded or Codeless

Automation Test
Strategy & Design
Software test automation has existed in one form or another for
many decades. The benefits of test automation are huge in
terms of increasing product quality while reducing costs and
time to market.

A few organizations have been immensely successful in
automating their tests as part of their application development
cycle. But many have had mixed results with test automation.

Oftentimes, teams still continue to manually test, or they
otherwise struggle as they embark on their test automation
journey. After all, this journey can raise difficult questions, such
as, “Can every manual test really be automated?” and “What are
some of the strategies and best practices of test automation?”

In this ebook, we’ll address these questions. Additionally, we’ll
offer a constructive definition of test automation, its challenges,
and how to get started. Finally, after discussing some test
automation strategies and best practices, we’ll provide a brief
overview of how artificial intelligence and machine learning is
being introduced into software testing.

3Automation Test Strategy & Design
Cross Browser Testing

Coded or Codeless

Test Automation:
Challenges &
Getting Started

4Automation Test Strategy & Design
Cross Browser Testing

Coded or Codeless

What Is Test Automation?

Test Automation Benefits

Test automation means testing software without any human intervention. You execute
a test that’s either scheduled for a specific time or triggered by an event, such as the
completion of a build. The actual test result is then validated against expected results
using assertions or validations.

Test automation reduces costs, time to market, and testing time. It also improves
software quality since, with reduced testing costs and time, you can run more tests
and increase test coverage.

There’s a common misconception that test automation will replace manual testing. It
isn’t true. Not every test can be automated. For example, exploratory testing still needs
to be done manually.

5Automation Test Strategy & Design
Cross Browser Testing

Coded or Codeless

Test Automation Lifecycle

The test automation lifecycle is comprised
of a few things. First, you determine the
scope of testing. You also decide how you’re
going to test, what tools you’ll use, and what
the execution of those tests will look like
(meaning you set up the environment and
automate the running of the tests).
Finally, you’ll analyze results.

Test Automation Classification

Test automation can be classified based on type of testing, type of tests, your SDLC
phase and execution platform. This is important because it is required to identify the
right strategy, right toolset and also the set the right expectations from the tests.

Other benefits of test automation include:

	• A safety net of automated smoke and regression tests before you promote your
software to production.

	• The flexibility to do risk-based testing - choosing the tests that you want to run
based on risks.

	• You can also incorporate automated tests with your continuous integration/
continuous deployment processes to achieve continuous testing.

6Automation Test Strategy & Design
Cross Browser Testing

Coded or Codeless

Challenges of Test Automation

Test automation requires a software development mindset and follows the same set
of best practices, like agile, to be successful

Test automation requires similar investment and priority as software development.
It can start as a pet project but requires a corporate mandate for wider adoption.
You need your testers and developers to have the right attitude. You also want some
experience with test automation, the right toolset, and a stable test environment.

Top 10 reasons for Flaky Automated Tests

Not having at framework

Using hardcoded test data

Using X,Y coordinates or XPath for element recognition

Using shared test environments. Not using a stable test environment

Having tests that are dependent on one another

Test not starting in a known state

Tests not managing their own test data

Not treating automation like any other sofware development efort

Failure to use proper synchronization

Badly written tests

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

7Automation Test Strategy & Design
Cross Browser Testing

Coded or Codeless

Maturity Levels of Test Automation

The maturity levels of test automation start from 100% manual testing to continuous
testing where test cases are created automatically based on application usage.
These levels of maturity mostly apply for UI testing, but can also be applied to other
types of software testing.

In many cases organizations start with test automation by writing scripts to execute
tests and execute them through a cron job or integrate with CI for continuous testing.

For UI interactions, recording user interactions with the applicatinon under test (AUT)
and playing it back to test the application would be the Level 2.

In Level 3 script based or script less tests are made immune to small changes in the UI
– like changes in an UI element. Reinforced learning techniques in Artificial Intelligence
(AI) and Machine Learning (ML) is used to locate the element even when few attributes
of the element have changed in the DOM and then execute the test. This reduces the
amount of maintenance needed for automated UI tests. This is also applicable for
pixel level validation tools.

In Level 4, automated tests are created based on learning the usage of an application
by actual users. This helps tests the paths used by the user while traversing a
business scenario like booking a travel ticket or buying something from a shopping
cart application.

8Automation Test Strategy & Design
Cross Browser Testing

Coded or Codeless

Getting Started

For those of you who are new to test automation, you may be wondering - how do I
get started? To do so, you have to think about:

	• The scope – what is it that you want to test and automate the testing of
	• The framework and tool set – what tools will be appropriate for creating and

executing your automated tests. In many cases you may be choosing multiple
tools.

	• Then you have to design and execute your tests followed by refining your tests to
adapt to your environment and scenario

	• The next step will be to integrate your tests with CI/CD processes that you may
have in house to achieve continuous testing

9Automation Test Strategy & Design
Cross Browser Testing

Coded or Codeless

Test Automation
Strategy
Considerations

10Automation Test Strategy & Design
Cross Browser Testing

Coded or Codeless

Areas to Consider

Where do we begin?

The likely areas to consider as you get started with your test automation journey can
be as follows:

The first step is about identifying your scope.
What do you want to automate first? Mike Cohn
lays out a Testing Pyramid with Unit tests at the
bottom and GUI tests at the top of the pyramid.
Everything else like component level testing,
integration testing, API testing is in between.

Typically, you identify the low hanging fruit that
delivers the big bucks. Identify what hurts most
and what delivers the biggest value to your
organization. If GUI tests require a lot of manual
effort, that may be your starting point. On the
other hand, if your unit tests are not integrated
and automated, that can be a starting point. If
API is the service you provide to your
customers, making sure those APIs deliver what
they are expected to yields the biggest value.

You may not find a single tool that delivers all
your test automation needs. Before choosing a
tool or framework for your needs, try it out in
your environment with your test use cases. If it
meets your needs then expand adoption of
that solution.

GUI Tests

API Tests

Unit Tests

Integration Tests

Component Tests

11Automation Test Strategy & Design
Cross Browser Testing

Coded or Codeless

Applying Agile Principles

Automated test development should
be treated like any other software
development project. All of your
favorite agile principles apply when
automating tests.

Each dev sprint will have its own test
creation sprint to test the features
built during that sprint. These tests
then become part of the regression
suite as you move to the next
sprint cycle.

Testing shouldn’t be an activity done only at the end of a sprint by a designated
tester. As with agile’s emphasis on teams over processes, it’s important to remember
that test automation is a team effort.

Everyone on the team must be on board, and expectations for testing must be clearly
outlined.

In any agile software development lifecycle (SDLC), you’ll have automated tests
created for a sprint while the sprint is being developed. That way, the tests are ready
to execute toward the end of the sprint. These new tests are added to the regression
suite and are executed during or after every sprint.

Some or all acceptance tests may be executed before code is released to production.

Agile Testing

AGILE SOFTWARE DELIVERY LIFE CYCLE

RELEASESPRINT 1 SPRINT 2 …. SPRINT N REGRESSION
TESTING

ACCEPTANCE
TESTING

NEW AUTOMATED TESTS WRITTEN EACH SPRINT NEW AUTOMATED
TESTS FROM

SPRINTS ADDED
TO EXISTING

REGRESSION TEST
SUITE

HIGH LEVEL
ACCEPTANCE

TEST PLAN
CREATED AND

EXECUTED

Agile test automation

12Automation Test Strategy & Design
Cross Browser Testing

Coded or Codeless

Test Automation Candidates

Test Modeling and Test Coverage

common problem I usually see is that
teams start off by trying to automate
everything. The problem is that, not every
test can be automated. For test cases to
be automated, you should look for tests
that are deterministic and don’t need
human interaction. They are hard to test
manually, and need to run more than once
possibly using different data sets or on
differentbrowsers or for load testing.

You should consider using automation for
any software testing activity that saves
time, improves quality of testing andtesting
efficiency.

What tests shouldn’t you automate?

In general, tests that you execute once or
applications that are not testable
unless you actually use it should not be
automated. Exploratory tests, or tests that
do not provide predictable results are
additional examples, but there can be
exceptions.

Test models can be broadly categorized into three types.

• Event-based model :
Based on GUI events
that occur at least once.

• State-based model :
Based on GUI states
exercised at least once.

• Domain model :
 Based on the application
 functionality.

t

13Automation Test Strategy & Design
Cross Browser Testing

Coded or Codeless

Automation Tools & Implementation

The tool selection process involves
	• Understanding your requirements and key criteria in the decision-making

process.
	• If you already have some type of test automation tool in house, consider that

as a baseline.
	• You may leverage Pugh Matrix technique for analysis to make your decision.

Pugh Matrix technique is based on key criteria, a baseline and weighting to
arrive at a score.

	• If you are an Agile development shop, it is always wise to pick an Agile friendly
tool: an example will be to choose a tool that ties test cases and test results
back with user stories and requirements in your agile management tool.

As for implementation of test automation, you have the option to go code based
or code less. This will depend on the target users who will be using the tool. Test
engineers will prefer a code based or hybrid solution whereas manual testers will
prefer codeless solution. Your choice of tools will also depend on your test execution
environment -desktop/server, web, mobile device, emulators etc. Not every test
automation solution supports every environment.

Test Data

Test data is an important aspect of testing. In many cases it drives testing as in
data driven testing. Before you start testing, you need to understand what your
test data requirements are. Test data coverage is as important as test coverage
itself. Testing teams typically derive test data from production databases through
subset and masking. The test data is then made available in a database from
where test data is provisioned to individual teams for testing. Test data may get
burnt after testing. When that happens, you re-provision the test data.

In model-based test automation, you create a model of your application and specify
the inputs and outputs to the application. You identify the list of paths that needs
testing. This can depend on the business scenario, events or states that you are trying
to test.

You may apply heuristics and risk factors while trying to come up with a test list that
can provide you with an optimal test coverage based on risks taken. Heuristics in
this case is a way of prioritizing certain computation paths over others based on
feature functions that you are trying to test and applied mainly when you add new
capabilities or make changes to an existing application.

Next you execute tests and evaluate results. Many test automation solutions create
test automation scripts and provide fit-for-purpose test data to optimize your tests
and test data coverages. Software testing based on a model, improves test coverage
without increasing over testing.

14Automation Test Strategy & Design
Cross Browser Testing

Coded or Codeless

Test data from production isn’t the only source of test data. To reduce reliance on
production data, for security reasons like GDPR or to improve test data coverage, I
have seen my customers use synthetic test data generation techniques to create test
data. TDM tools from CA Broadcom, Informatica, and others provide different sets of
capabilities on creating test data.

Service and Database Virtualization

Today’s applications are no longer monolithic and rely on various other components and
applications that have their own SDLC time lines. When your application or component
relies on other components and these components aren’t available you virtualize these
components using service virtualization. This can be done for APIs, databases and other
services. Variety of tools are available in this space including tools from CA Broadcom,
Parasoft, Delphix, Tricentis and others. Simple stubs and mocks are also used to simulate
dependent services.

Test Management Maintaining Automated Tests

It is important to deliver features as
described in the requirements by
business analysts.

How do your BA’s know that your
application has delivered the features
that they had requested? This is where
linking the user stories from requirements
with the test cases and test results in an
Agile requirements management tool
becomes important.

BA’s don’t typically have access to test
systems but they do have access to
requirements management tools. Tying
test results back to requirements makes it
easier for BA’s to have better visibility into
where the feature is in the SDLC as well as
whether the feature delivers the user
stories outlined in the requirements

Test maintenance is one of the biggest
challenges test engineers encounter when
doing Test Automation, especially for
applications with an UI. Minor changes to
the UI break most automated tests.
Advanced test automation frameworks like
Testim allows you to create automated
tests that reduce test maintenance. Testim
self-heals automated tests whenever there
are minor changes to the UI cutting down
overall test maintenance to less than 10%. It
does this using machine learning
techniques in AI.

You can also reduce test maintenance by
modularizing your tests and by using other
best practices that we will cover later in
this ebook.

15Automation Test Strategy & Design
Cross Browser Testing

Coded or Codeless

Software Test Metrics

Continuous Testing

Test Automation Metrics

ROI & Cost of Test Automation

Software test metrics are used to measure
and monitor your team’s progress with test
automation. These metrics can convey
absolute data, like time taken to run a test,
or information derived from absolute data.

Bugs found during testing can be helpful
to determine if your software testing
efforts including using test automation is
bringing value.

One of the main reasons for Test
Automation is to be able to achieve
continuous testing. As you implement
continuous integration, the next step is the
ability to execute tests every time you have
a new build. Automating your tests helps
you achieve that.

You can then integrate your automated
tests with your continuous delivery and
continuous release tools to integrate
testing into your entire SDLC pipeline
enabling you to do continuous testing as
you promote builds from one environment
to another.

Test automation is the enabler for
continuous testing. You can achieve
continuous testing for both your
functional and non-functional tests
including component level performance
tests.

Some of the most important test metrics to
consider is what percent of manual tests
you’re executing and what your mean time
to debug (MTTD) a failing automated test is.

The more manual tests you have, the longer
it will take to verify that your application is
ready for release. A high MTTD is an
indicator that your automated test code is
not of good quality.

Test automation flakiness should be zero.
This is a good indicator as to whether your
automation tests are reliable or not.

Determining the ROI of your test
automation efforts can be tricky. A common
calculation that some folks use to get a
rough estimate of their test automation
costs is:

Tools cost + Labor cost to create automated
tests + cost of automated test maintenance

If the cost of executing the tests manually is
more than automation costs, it makes sense
to automate the tests.

This can help you decide whether a test
case is even worth automating as opposed
to testing it manually from a cost perspective.
There are other benefits like time savings,
ability to run with broader data sets,
improved quality etc., which should also be
factored in.

ROI quickly adds up as you re-run your
automated test suites.

16Automation Test Strategy & Design
Cross Browser Testing

Coded or Codeless

Test Design
Best Practices

17Automation Test Strategy & Design
Cross Browser Testing

Coded or Codeless

Test Automation Process

Now that we’ve covered some test automation strategy considerations, we’ll look at
some best practices.

Single Responsibility Principle is a popular strategy to use when creating your test
automation by modeling the behavior on your application. Creating simple page
objects that model the pieces of your software that you are testing against, can do
this. Say, for example, you would write a page object for login or a page object for a
homepage. Following this approach correctly makes use of the single responsibility
principle.

The Screenplay pattern takes page objects and chops them down into really tiny
pieces for better maintainability and reliability.

The Ports and Adapters design strive to make sure that you are using the single
responsibility principle so that an object should do only one thing and have one
reason to change. You decouple your test to allow you to swap slow components with
fast simulators to prevent slowing down your tests.

Presenter First is a modification of the model-view-controller (MVC) way of organizing
code and development behaviors. This helps to create completely tested software
using a test-driven development (TDD) approach.

It is quite normal to assume that your applications are going to change over time.
And since you know change is going to happen, you should start off right from
the beginning using best practices or design patterns. Doing so will make your
automation more repeatable and maintainable. Common test automation design
patterns that many teams use to help them create more reliable test automation are
outlined below.

18Automation Test Strategy & Design
Cross Browser Testing

Coded or Codeless

Test Automation Process

The test automation process can be reduced to a six-step, cyclical process as shown in
the diagram below:

You start with analyzing your testing requirements and objectives, followed by authoring
your tests through scripting or recording or a combination, executing your tests to make
sure they run reliably, evaluating the results, communicating the results to the team to
gain confidence and fine tuning the tests to make them more reliable. If you notice a
flaky test, refactor it to make it more reliable. Most importantly, delete any tests that aren’t
reliable and haven’t been fixed within a given time frame.

Periodically ask the team if an automated regression test is still adding value. Pruning old
tests will save you maintenance time and ensure you’re only running ones that are useful.

19Automation Test Strategy & Design
Cross Browser Testing

Coded or Codeless

Areas of Testing: GUI Testing

For web-based GUI testing, here’s an example of what you may want to analyze
and test:

In a similar fashion, you can classify different areas of testing for API testing,
integration testing, security testing, and the like. Analyze your needs and then start
implementing tests based on your objectives

GUI Testing - Sample Scope

9

10

11

12

13

8 Error messages

Required fields

Abbreviations inconsistencies

Progress bars

Shortcuts

Screen rendering

1

2

3

4

5

6

7

Size and position of GUI elements

Clear and well-aligned images

Font and alignment of text

Date and numeric fields

Screen Validations

Navigations (links)

Usability conditions and data integrity

20Automation Test Strategy & Design
Cross Browser Testing

Coded or Codeless

UI is just the top of the Testing Pyramid. Just testing the UI isn’t enough. Unit tests,
integration and other tests must be done in conjunction with UI tests to improve
quality of your software and be successful with your test automation efforts.

As you continue with your test automation journey, you’ll learn and have your own
best practices for your organization. It's important to capture, share, and use that
knowledge across departments.

•	 Prioritize what you want to test. You
can’t automate everything in your
first attempt at test automation.

•	 Reduce, reuse, recycle. Revisit
existing regression tests and
recycle the ones that are no longer
providing any value.

•	 Create short, structured, single-
purpose tests that are independent
and can be executed in parallel.

•	 Compose complex tests from simple
ones.

•	 The initial state of a test should
always be consistent.

•	 Use wait-for mechanisms instead
of hard coded sleep to improve
stability and synchronization
between test execution and the
application.

•	 Use abstractions where possible
for reusability, clarity, and ease of
maintenance.

•	 Use assertions to validate
automated tests.

•	 Reduce the use of conditions
whenever possible.

•	 Use setup and teardown steps to
prepare for your test and cleanup
after the test executes.

•	 Use data-driven tests instead
of hardcoding data, use design
patterns while designing your tests

•	 Use a stable test environment to
run your test. This makes it easier to
debug your tests if they’re failing.

•	 For web UI testing, create tests that
are resistant to small changes in the
UI.

•	 Follow a test naming convention that
is aligned with your source code
naming convention so you can easily
identify and locate your tests.

•	 Capture screenshots for easy
debugging of your tests.

•	 Setup detailed reporting for your
test results

Test Automation Design Strategy and Best Practices

There are many test automation design best practices. I have listed the ones that I
found quite useful below:

21Automation Test Strategy & Design
Cross Browser Testing

Coded or Codeless

Choosing a Test
Automation
Framework and Tools

22Automation Test Strategy & Design
Cross Browser Testing

Coded or Codeless

Test Automation Frameworks

A test automation framework is a combination of set protocols, rules, standards,
and guidelines that together can be used to leverage the benefits of the scaffolding
provided by the framework when implementing test automation. There are many test
automation frameworks and I will try to cover few categories with some examples
for each.

When Mercury pioneered performance testing in mid or late 1990s, it was just a
load generating tool. Over the years it added support for more protocols, more
execution platforms, more applications and adding enterprise level features
around reporting, logging mechanisms, Exception handling, notification etc. Later
LoadRunner, was tightly integrated with HP Unified Functional Test (QTP), Application
Lifecycle Management (ALM) and the architecture was enhanced to support modern
applications on the internet with millions of virtual users connecting from all over the
world. It provided the authoring and execution environment, included libraries for
integration with other applications and also featured UI to create your automated
tests easily and reports. This is what I mean by test automation framework.

A test automation framework provides the execution environment for the automation
test scripts in addition to capabilities for developing automated tests, executing tests,
test reporting and integration with other CI/CD toolsets.

Test Automation Framework

Modular, Library based

Keyword, Data, Behavior Driven

Linear (Record & Playback)

Page Object Model

Hybrid

Continuous Integration & Continuous Testing

Scripts and Resources

Common Libraries

Execution Environments

Test Automation Tool Set

Constants Environment SettingsConfiguration FilesObject Repository Test Data

Application InputApplication LogicData Readers

NotificationsExceptionsTest Execution Reports Logs

23Automation Test Strategy & Design
Cross Browser Testing

Coded or Codeless

•	 Easy and fast authoring
•	 Reusability & test coverage
•	 Script bases, scriptless or hybrid
•	 Stability of tests, low cost maintenance
•	 Minimal manual intervention
•	 Root cause analysis/debugging
•	 Reports
•	 Integration with APM
•	 Testers (developers, QA, manual)
•	 Open source/non-open source

Criteria/What to consider?

•	 Selenium
•	 Carina
•	 Google EarlGrey
•	 Cucumber
•	 Watir
•	 Appium
•	 Robot Framework
•	 JMeter
•	 Gauge
•	 Robotium

Open Source

•	 Testim
•	 Tricentis
•	 Mabl
•	 BlazeMeter
•	 UFT/QTP
•	 LeanFT
•	 Automation Anywhere
•	 CodedUI
•	 TestComplete
•	 Sikuli

Vendor Sourced

The advantages of test automation frameworks, can be in different forms like the
ease of scripting, scalability, modularity, understandability, process definition, re-
usability, cost, maintenance etc. To reap these benefits, developers and testers are
advised to use one or more of the test automation framework as may be appropriate
for your needs.

When you have many developers and test automation engineers working on different
modules of the same application, it is advisable to select a single test automation
framework to avoid situations where each of the developers implements his/her
approach towards automation.

There are different types of test automation frameworks:

	• Modular or library-based: primarily employed for their reusability.

	• Keyword, data, or behavior-driven: allow you to control your tests based on
feature or
test data.

	• Linear: records user scenarios and plays them back for testing.

	• Page object model: reduces duplication and enhances maintenance.

	• Hybrid: a combination of the above frameworks.

Today, most commercially available test automation solutions provide a test
automation framework of some sort.

Below are some criteria to be considered before deciding on a test automation
framework in addition to some examples of open-source and vendor sourced
frameworks.

24Automation Test Strategy & Design
Cross Browser Testing

Coded or Codeless

Test Automation Tools

Examples of Test Automation Tools

There is no “correct” test tool for automation testing. The best test automation tool
that your team can benefit from depends on your team’s unique needs and skill set.

I always recommend that you run a two or three week proof of concept (POC) for
each tool that you are considering and review your team’s feedback in the process
before committing to a tool. Find out if the tool has an active user base and select
tools that other companies are using. Determine how easy it is to hire folks that have
the skills needed to create your automated tests. Review product roadmap and make
sure the tools you select will handle future features and technologies. Finally, evaluate
costs, not only the initial cost of deployment but also maintenance or subscription
costs as appropriate.

Below is a summary of the guidelines for tool selection and different categories of
software testing tools.

Below are examples of some test automation tools. This list is based on my use of
some of the tools first hand, reviews and recommendations from colleagues and
customers and domain thought leaders in this area.

I haven’t covered few categories like Service Virtualization, Test Data Management
etc. A simple google search will provide you with list of tools in that area

25Automation Test Strategy & Design
Cross Browser Testing

Coded or Codeless

Test Automation Tools

Testim
LambdaTest
Browsera
CrossBrowser Testing
SauceLabs
GhostLab
BrowserShots

Cross-browser Testing

Test Management
qTest
TestPad
PractiTest
Qmetry

Testrail
TestCollab
QAComplete
TestLinkz

JIRA
Mantishub
FogBugz
Bugzilla
BugNet
BugGenie
RedMine

Defect Tracking

NetSparker
Snyk
Acunetix

Security Testing Tools

W3C CSS Validator
Code Beautify

CSS Validator Tool

CA Agile Requirements
Designer Gannett USA Today

Model Based Testing

Testim
Ranorex
Selenium
QTP
Watir

Testim
Applitools
Telerik
TestComplete
Katalon

Automated Testing
(functional, regression)

Appium
Expresso
Perecto
ExperiTest

Robotium
MonkeyRunner
Ranorex
UI Automator

Mobile UI Testing

SoapUI
SOAPSonar
WebInject
Tricentis

API Testing Tools

Testim
Ranorex
Studio
Rapise
AutoIt

CubicTest
eggPlantUI
Fitnesse
Ascentialtest

Web UI Testing

Applitools (pixel)
Percy.io (pixel)
Chromatic (pixel)
Screenr (pixel)
Galenframework (non-pixel)

Visual Validation

BlazeMeter
LoadRunner
WAPT
LoadUI Pro
SilkPerormer

JMeter
LoadFocus
LoadImpact
WebLoad

Load Testing

26Automation Test Strategy & Design
Cross Browser Testing

Coded or Codeless

New Trends in Test
Automation

27Automation Test Strategy & Design
Cross Browser Testing

Coded or Codeless

Applications today are increasingly complex. They interact with many other
applications using APIs, and user interactions with these applications can be on a
variety of devices. As a result, the complexity of testing these applications has grown
in a non-linear fashion.

AI and machine-based intelligence are expected to play a key role in solving the
complexity of testing modern-day applications. AI identifies problem areas based on
past tests (defects, results, logs, test cases, source code etc) and to help understand
system behavior better. AI/ML is expected to make testing from driver based to
driver-less, from monitored to non-monitored and from manual creation, execution,
maintenance of test cases to automated without or with minimal human involvement.

•	 Applications complexity has
increased significantly & so
has software testing

•	 AI/ML is expected to play a
major role in software testing

•	 Software testing tools have
started incorporating AI/ML

•	 AI enables non deterministic
tests

•	 AI identifies problem areas
based on past tests (defects,
results, logs, test cases, source
code etc)

•	 AI helps understand system
behavior better

Brief Overview

Testim
Applitools
TestCraft
AccelQ
Mabl
AutonomIQ
AppvanceIQ

AI/ML based Tools

Auto heal test scripts
for small application
changes for effective
regression testing and to
reduce test maintenance.

Auto-generate test
cases based on user
interactions & use cases

Auto-validate test inputs
based on ML without
manual user inputs
validations

Scenarios

AI/ML in Test Automation

28Automation Test Strategy & Design
Cross Browser Testing

Coded or Codeless

Our testing tools are already changing. Software testing tools have started
incorporating AI/ML. For example, Testim allows test cases to execute successfully
even when there have been minor changes in the application UI. Testim uses
reinforced machine learning techniques to locate and identify elements in the UI
of the application under test, even when certain attributevalues of the elements
or properties of the web page have changed. Tests will no longer have to be
deterministic. AI will be able to help test non deterministic scenarios. Testim is also
spearheading the effort to create automated tests by observing actual usage of
applications by real users. This will help increase coverage and focus on areas most
prone to defects.

Automated tests know how to interact with the system, but they can’t distinguish
between correct and incorrect behaviors of the application under test. In AI/ML based
testing there will be a range of possible outcomes. A test engineer would need to run a
test many times and make sure that statistically the conclusion based on test results is
correct. AI based learning from failures will help make decisions on how new tests will
be created and executed even under slightly changed conditions.

AGGREGATE USER- ACTION FLOWSLEARN BY OBSERVATION CREAT TESTS FROM FLOWS

29Automation Test Strategy & Design
Cross Browser Testing

Coded or Codeless

Looking to the Future
Currently, autonomous solutions in software testing are still in
their infancy. Functional testing tools have adopted various
forms of autonomous capabilities from discovering an
application structure to predictive self-healing to intelligent
bug hunting. End-to-end autonomous testing solutions have
yet to be widely adopted by large enterprises. However, this
will change as people become more comfortable with
test automation.

30Automation Test Strategy & Design
Cross Browser Testing

Coded or Codeless

Sudhrity is a technology advisor and technical
sales leader at Testim.io.

He specializes in Automated functional/
performance Testing, Test Modeling, Test Data
Management, Service Virtualization,
Continuous Delivery/Testing and DevOps.

With over 28 years of software development,
architecture and consulting experience, he is
passionate about making sure that his
customers see and derive value from
successful adoption of technology.

Sudhrity Mondal

About the Author

LinkedIn
linkedin.com/in/sudhrity

Twitter
@sudhrity

Email
sudhrity@testim.io

31Automation Test Strategy & Design
Cross Browser Testing

Coded or Codeless

contact us at info@testim.io
For more information

Thank You!
Cross Browser Testing

Coded or Codeless

